原料場→篩分、破碎和混勻配料→回轉窯→礦熱爐→鐵包脫硫→精煉轉爐→澆鑄。在這個基礎上,發(fā)展了對原料預干燥、原料制球、回轉窯節(jié)能和余熱發(fā)電、礦熱爐高效冶煉和低熔點渣系配料、采用底吹或側吹精煉轉爐替代頂吹轉爐、鎳鐵粒化等技術,適用于不同條件的工廠。
鎳礦回轉窯圖片
紅土鎳礦選礦工藝概述
注:所有設備因型號,規(guī)格不同,具體價格河南宏科重工會根據(jù)客戶實際需求給出相應的報價。
礦石、石灰石、還原劑在原料場、備料間加以篩分破碎后,混勻配料送入回轉窯。
在紅土鎳回轉窯設備中,原料經(jīng)干燥、焙燒、預還原,制成約1000℃的鎳渣,回轉窯煙氣經(jīng)余熱鍋爐、除塵、脫硫化后排放,粉塵與原料混合后再次入窯。
鎳渣在封閉隔熱狀態(tài)下(高架送料小車)加入礦熱爐料倉(內(nèi)襯耐火磚),根據(jù)工藝要求通過不同位置的下料管分配到礦熱爐內(nèi)。
礦熱爐為全封閉式,自焙電極,埋弧冶煉,還原并熔分粗制鎳鐵和爐渣,同時產(chǎn)生含Co約75%的礦熱爐荒煤氣,荒煤氣經(jīng)過凈化送到回轉窯燒嘴,與煤粉一起作為燃料,除塵灰經(jīng)處理后,返回到原料場。礦熱爐爐渣經(jīng)過水淬后可作為建筑材料,用于道路建設、制磚。
礦熱爐的產(chǎn)品是粗制鎳鐵,出鐵前預先在鐵水包加脫硫劑,出鐵同時脫硫,粗制鎳鐵含Si、C、P等雜質(zhì),需要繼續(xù)精煉,扒渣后,兌入酸性轉爐,吹氧脫硅,同時加入含鎳廢料以防鐵水溫度偏高,脫硅后扒渣(或者擋渣出鐵),兌入堿性轉爐,吹氧脫磷、脫碳,同時加入石灰石造堿性渣,堿性轉爐精煉后的鎳鐵水送往澆注車間,鑄成合格的商品鎳鐵塊或者制成粒狀鎳鐵。
紅土鎳礦回轉窯工藝特點
1.原料適應性強。可適用鎂質(zhì)硅酸鹽礦和含鐵不高于30%的褐鐵礦型氧化鎳礦,以及中間型礦。最適合使用濕法工藝難以處理的高鎂低鐵氧化鎳礦石。
2.鎳鐵品位高,有害元素少。同樣的礦石,RKEF工藝生產(chǎn)的鎳鐵品位高于高爐法和“燒結礦-礦熱爐”工藝。該工藝的脫硫和轉爐精煉工序能夠將鎳鐵的有害元素降低到ISO6501標準所要求的范圍內(nèi),為煉鋼用戶所歡迎。
3.節(jié)能環(huán)保,循環(huán)利用。原料水分較多,料場和篩分破碎運輸?shù)倪^程中不產(chǎn)生粉塵,回轉窯煙氣余熱可回收蒸汽用于發(fā)電,經(jīng)過煙氣脫硫滿足環(huán)保要求后排入大氣,回轉窯和礦熱爐煙塵返回料場;礦熱爐煤氣經(jīng)除塵后送回轉窯作燃料,爐渣水淬后成為建筑工業(yè)原材料。轉爐煙氣余熱回收蒸汽,煤氣回收利用,爐渣磁選回爐,尾渣可鋪路或制作水泥。從含水爐料進入回轉窯直到礦熱爐出鐵出渣的整個過程產(chǎn)中,爐料處于全封閉,環(huán)保節(jié)能。
4.鎳渣熱料入礦熱爐。回轉窯產(chǎn)的鎳渣在900℃以上的高溫下入爐,相對于“燒結礦-礦熱爐”的冷料入爐,節(jié)省了大量的物理熱和化學熱,顯著降低了電能和還原劑的消耗,提高了生產(chǎn)效率。
紅土鎳礦回轉窯技術參數(shù)
產(chǎn)品規(guī)格 (t/h) |
窯體尺寸 | 電機功率 (kw) |
總重量 (t) |
備注 | ||||
---|---|---|---|---|---|---|---|---|
直徑(m) | 長度(m) | 斜度(%) | 產(chǎn)量(t/d) | 轉速(r/min) | ||||
Φ2.5×40 | 2.5 | 40 | 3.5 | 180 | 0.44-2.44 | 55 | 149.61 | |
Φ2.5×50 | 2.5 | 50 | 3 | 200 | 0.62-1.86 | 55 | 187.37 | |
Φ2.5×54 | 2.5 | 54 | 3.5 | 280 | 0.48-1.45 | 55 | 196.29 | 窯外分解窯 |
Φ2.7×42 | 2.7 | 42 | 3.5 | 320 | 0.10-1.52 | 55 | 198.5 | ---- |
Φ2.8×44 | 2.8 | 44 | 3.5 | 450 | 0.437-2.18 | 55 | 201.58 | 窯外分解窯 |
Φ3.0×45 | 3.0 | 45 | 3.5 | 500 | 0.5-2.47 | 75 | 201.94 | ---- |
Φ3.0×48 | 3 | 48 | 3.5 | 700 | 0.6-3.48 | 100 | 237 | 窯外分解窯 |
Φ3.0×60 | 3.0 | 60 | 4 | 800 | 0.3-2 | 100 | 310 | ---- |
Φ3.2×50 | 3.5 | 50 | 4 | 1000 | 0.6-3 | 125 | 278 | 窯外分解窯 |
Φ3.3×52 | 3.3 | 52 | 3.5 | 1300 | 0.266-2.66 | 125 | 283 | 預熱分解窯 |
Φ3.5×54 | 3.5 | 54 | 3.5 | 1500 | 0.55-3.4 | 220 | 363 | 預熱分解窯 |
Φ3.6×70 | 3.6 | 70 | 3.5 | 1800 | 0.25-1.25 | 125 | 419 | 余熱發(fā)電窯 |
Φ4.0×56 | 4.0 | 56 | 4 | 2300 | 0.41-4.07 | 315 | 456 | 預熱分解窯 |
Φ4.0×60 | 4 | 60 | 3.5 | 2500 | 0.396-3.96 | 315 | 510 | 預熱分解窯 |
Φ4.2×60 | 4.2 | 60 | 4 | 2750 | 0.41-4.07 | 375 | 633 | 預熱分解窯 |
Φ4.3×60 | 4.3 | 60 | 3.5 | 3200 | 0.396-3.96 | 375 | 583 | 預熱分解窯 |
Φ4.5×66 | 4.5 | 66 | 3.5 | 4000 | 0.41-4.1 | 560 | 710.4 | 預熱分解窯 |
Φ4.7×74 | 4.7 | 74 | 4 | 4500 | 0.35-4 | 630 | 849 | 預熱分解窯 |
Φ4.8×74 | 4.8 | 74 | 4 | 5000 | 0.396-3.96 | 630 | 899 | 預熱分解窯 |
Φ5.0×74 | 5 | 74 | 4 | 6000 | 0.35-4 | 710 | 944 | 預熱分解窯 |
Φ5.6×87 | 5.6 | 87 | 4 | 8000 | Max4.23 | 800 | 1265 | 預熱分解窯 |
Φ6.0×95 | 6 | 95 | 4 | 10000 | Max5 | 950×2 | 1659 | 預熱分解窯 |